

ecology and environment, inc.

CLOVERLEAF BUILDING 3, 6405 METCALF, OVERLAND PARK, KANSAS 66202, TEL. 913/432-9961

International Specialists in the Environment

MEMORANDUM

· La Close Coall MCD981715980

TO:

Pete Culver, RPO

THRU:

Sharon Martin, Acting FITOM

FROM:

E & E/FIT

DATE:

January 30, 1991

SUBJECT: HRS Considerations for the Laclede Coal Gas Plant Site,

St. Louis, Missouri.

TDD #F-07-9008-020

PAN #FM00579SA

Site #Y33

Project #002

Superfund Contact: Greg Reesor Project Manager: Keith A. Brown

INTRODUCTION AND BACKGROUND

The Region VII U.S. Environmental Protection Agency (EPA) tasked the Ecology and Environment, Inc., Field Investigation Team (E & E/FIT) to conduct a Screening Site Inspection (SSI) of the former Laclede Coal Gas Plant site in St. Louis, Missouri. The purpose of the SSI is to determine whether waste remains on site, posing potential hazards to human health or the surrounding environment.

The site is a former manufactured gas plant. Tar sludges (coal tars) and spent oxides are the two waste streams of primary concern. Coal tar wastes are primarily polynuclear aromatic hydrocarbons (PAHs) and phenols that were produced during coal or coke combustion. iron oxide wastes were produced during the gas purification process where impurities were removed from the manufactured gas. Iron oxide wastes contain sulfur compounds, cyanide compounds, and small quantities of coal tar.

The site was first investigated by E & E/FIT on September 17, 1987. A site reconnaissance was conducted at the Mound Street Power Plant to aid in preparing a Preliminary Assessment (PA) report; the plant is located on the former Laclede Coal Gas property. The Mound Street Plant is now owned by McKinley Iron and it is in the process of being razed. The PA was prompted by reports of oil accumulation in the facility and the occasional release of oil into the adjacent Mississippi River. Six liquid samples were collected from the basement of the facility, where hydraulic oil from electrical transformers allegedly was stored. Two samples from two different manholes adjacent to the facility were also sampled. All samples were screened for PCBs at a 1 ppm detection limit. No PCB contaminants were identified by the Tracor gas chromatograph.

07CY

01100

Superfund

1.0

Laclede Coal Gas HRS Considerations Page 2

The E & E/FIT conducted a second site reconnaissance on November 20, 1990, to facilitate preparation of the work plan for the SSI. The FIT observed seepage from the foundation and piping system of an abandoned pump house that was formerly owned by the Mound Street Power Plant. The pipes, which originate from the plant, had been plugged with concrete, but seepage was still leaching through the concrete. Because this pump house is located on the east side of the flood control levee, this leachate was observed to be seeping directly into the Mississippi River.

HRS CONSIDERATIONS

A preliminary Hazardous Ranking System (HRS) score of 50 was calculated for the Laclede Coal Gas site. The ground water pathway was assigned a score of 1, based on a suspected release to ground water. This low score reflects the fact that ground water is not used for drinking water within the 4-mile target distance limit. An observed release to ground water is likely if wastes are found to be buried on site, because the ground water table is relatively shallow. The preliminary ground water score is based on the minimum value for waste quantity (18). It is FIT's professional judgment that waste quantity is particularly large at this site, since it is one of the largest coal gas plant sites investigated by Region VII. However, if waste quantity at the Laclede Coal Gas Plant site receives the maximum HRS value of 100, the overall pathway score would only increase to 3, because of the low number of targets.

The surface water pathway is the primary pathway of concern and is given the maximum value of 100. Leaching of waste into the Mississippi River was observed during an SSI reconnaissance; therefore, a suspected release was evaluated for the preliminary surface water pathway score. It should be noted that the constituents of the waste are still unknown. The Illinois community of Metro East receives water from a surface water intake located east across the river approximately 1/4 mile from the Sports fishing on the Mississippi River has also been documented relatively close to the site. Drinking water and food chain targets are evaluated along the 15-mile target distance limit and are considered primary targets under HRS evaluation. Waste quantity is given an HRS value of 32, since primary targets were evaluated for the surface water pathway and this value is greater than the determined waste quantity value. Further investigative work is needed to confirm migration to the nearby surface water body. The nearest sensitive environment is about 10 miles downstream.

The probability of documenting an air release for the Laclede Coal Gas site is low. The pathway was evaluated according to the no suspected release criteria, generating a pathway score of 9. No primary targets exist for the pathway. The nearest individual is about 1/4 mile from the site and no sensitive environments exist within 1/2 mile from the boundaries of the site.

Laclede Coal Gas HRS Considerations Page 3

The soil exposure pathway score is 3. FIT determined that no targets live on or within 200 feet of suspected contamination. A total of 11 workers were evaluated for potentially threatened targets.

An SSI is recommended for the Laclede Coal Gas site to determine if the sludges (coal tars) and spent oxides are buried on site and pose an environmental hazard.

After the SSI is completed and the preliminary HRS evaluations are verified, an updated score will be calculated. This site has a medium potential to score for the NPL.

Attachments: HRS PA Scoresheets and Reference List

Date:

Site Name: La Clade Cool Gas 8 1-11-01

GROUND WATER PATHWAY SCORESHEET

Pathway Characteristics	
Do you suspect a release (see Ground Water Pathway Criteria List, page 7)?	Yes No
Is the site located in karst terrain?	Yes No
Depth to aquifer: .	Shollow !
Distance to the nearest drinking-water well: GOU NOT JSED FOR DRINGING	6 Waster - 1

	Depth to aquifer: Distance to the nearest drinking-water well: 600 No 1550 FOR DR	w.Cove work	Shollow ft	
1		Α	В	
LIK	ELIHOOD OF RELEASE	Suspected Release	No Suspected Release	References
1.	SUSPECTED RELEASE: If you suspect a release to ground water (see page 7), assign a score of 550, and use only column A for this pathway.	1560I 550		(1)(2)(2
2.	NO SUSPECTED RELEASE: If you do not suspect a release to ground water, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Use only column B for this pathway.		(500 or 340)	
	* Observed release likely it was to present	550		
TA	RGETS	·		
3.	PRIMARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you suspect have been exposed to hazardous substances from the site (see Ground Water Pathway Criteria List, page 7).			<u>(2)(3)</u>
4.	SECONDARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you do NOT suspect have been exposed to hazardous substances from the site, and assign the total population score from PA Table 2.			
	Are any wells part of a blended system? Yes No No If yes, attach a page to show apportionment calculations.	(50,20,18,9,6,3,2, or O	[20, 18,0 5,3,2, or 0]	(2)(3
5.	NEAREST WELL: If you have identified any Primary Targets for ground water, assign a score of 50; otherwise, assign the highest Nearest Well score from PA Table 2. If no drinking-water wells exist within 4 miles, assign a score of zero.	120, 5, or O)	(20, 5, or 0)	(2) (3)
6.	WELLHEAD PROTECTION AREA (WHPA): Assign a score of 20 if any portion of a designated WHPA is within 1/2 mile of the site; assign 5 if from 1/2 to 4 miles.			
7.	RESOURCES: A score of 5 is assigned.	5 5	5	
	Τ=	5]
W	ASTE CHARACTERISTICS			_
8.	A. If you have identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor.	(100 as 32)	(100,32, or 19)	
}	B. If you have NOT identified any Primary Targets for ground water, assign the	(100.32. = 1017	(100,02, 0 101	

	If you have identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor. If you have NOT identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4.	(100.32, =48)	(100,32. ar i θi
·	WC =	18	

GROUND WATER PATHWAY SCORE:

LR x T x WC 82,500

NOV 06 1990

Site Name: Lackele. Gool Gas 12
Date: 1-14-91

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics

	Do you suspect a release (see Surface Water Pathway Criteria List, page 11)? Distance to surface water: Flood Frequency: What is the downstream distance to the nearest drinking-water intake? < 1/4 nearest fishery?/milesnearest sensitive environment?/0miles	miles	No	
	r	A Suspected	B No Suspected	
LIK	KELIHOOD OF RELEASE	Release	Release	References
1.	SUSPECTED RELEASE: If you suspect a release to surface water (see page 11), assign a score of 550, and use only column A for this pathway.	550		(1X2)(20
2.	NO SUSPECTED RELEASE: If you do not suspect a release to surface water, and the distance to surface water is 2,500 feet or less, assign a score of 500; otherwise, assign a score from the table below. Use only column B for this pathway. Floodplain Score		(500,400,300 or 100)	
	Site outside 500-yr floodplain 100	(550)	(500,400,300 or 100)	
	A Dopas, from of potential waste with surface LR =	550	130,400,300 2 100	
	Determine the water body types, flows (if applicable), and number of people served by all drinking-water intakes within the 15-mile target distance limit. If there are no drinking-water intakes within the target distance limit, assign a total Targets score of 5 at the bottom of this page (Resources only) and proceed to page 14. Intake Name Water Body Type Flow People Served LLL American Water Comm. Rever 147,000 cfs 300,000 cfs cfs cfs PRIMARY TARGET POPULATION: If you suspect any drinking-water intake listed			<u>(3) (</u> 4)
-7.	above has been exposed to hazardous substances from the site (see Surface Water Pathway Criteria List, page 11), list the intake name(s) and calculate the factor	3009000		(3)(4)
5.	SECONDARY TARGET POPULATION: Determine the Secondary Target Population score from PA Table 3 based on the populations using drinking-water from intakes that you do NOT suspect have been exposed to hazardous substances from the site. Are any intakes part of a blended system? Yes No			
	NEAREST INTAKE: If you have identified any Primary Targets for the drinking water threat (Factor 4), assign a score of 50; otherwise, assign the Nearest Intake score from PA Table 3. If no drinking-water intake exists within the 15-mile target distance limit, assign a score of zero.	[50,20,10,2,1, or 0]	(51	<u>(3)(4)</u>
<u>7.</u>	RESOURCES: A score of 5 is assigned.	5 3,000 0 5 5	5	

NOV 06 1990

Date:

Site Name: Lacherles Coal Gus 14. 1-14-91

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

			Suspected	No Suspected	
LIKELI	HOOD OF RELEASE		Release	Release	References
Enter th	e Surface Water Likelihood of Release so	core from page 12. LR =	530	(500,400,300 or 100)	
HUMA	N FOOD CHAIN THREAT TARGET	<u>'S</u>			•
the dis	termine the water body types and flows 15-mile target distance limit. If there are tance limit, assign a Targets score of 0 are ceed to page 15.	re no fisheries within the target			
Fis	shery Name	Water Body Type Flow			
-	Musinsippi Run				
_		cfs			(9)
to	IMARY FISHERIES: If you suspect any finazardous substances from the site (see sign a score of 300 and do not evaluate fishery (Rematicular),	Surface Water Criteria List, page 11),	300 ar 01		(5)
ass	CONDARY FISHERIES: If you have not it is a Secondary Fisheries score from the any fishery within the 15-mile target dis	e table below using the LOWEST flow	1210,30,12 or Ol	(210.30,12, or Ol	
	Lowest Flow	Secondary Fisheries Score		1	ŀ
	< 10 cfs	210		1	
l	10 to 100 cfs	30			
	> 100 cfs, coastal tidal waters, oceans, or Great Lakes	12			
L			[300,210,30,12 ar 0	210,30.12 # OI	1
		Т =	300		

NOV 0.6 1990

Site Name: Lackede Cal Cas 15

Date: |-14-91

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

/FI 0 1000				A Suspected	No Supposed	
ELIHOOD OF P	ELEASE			Release	No Suspected Release	Referen
er the Surface Wat	ter Likelihood of Poloss	e score from page 12.		1550)	1500,400,300 or 1001	710707077
		e score from page 12.	LR =	550		
VIRONMENTAL	. THREAT TARGETS				<u></u>	
		ws (if applicable) for all surface				
sensitive environi	ments within the 15-m	ile target distance limit (see PA	Tables 4			
and 5). If there a	re no sensitive environ	ments within the 15-mile target	t distance			
page 17.	rgets score of 0 at the	bottom of this page, and proces	ed to			
Environment Nar	ne	Water Body Type	Flow			
			cfs			
			cfs			
			cf s			
			cfs			
			cfs			
PRIMARY SENSIT	IVE ENVIRONMENTS:	If you suspect any sensitive er	wiron-	(300 or O)		
		,				
ment listed above	has been exposed to i	hazardous substances from the	site (see			
Surface Water Cri	iteria List, page 11), as	hazardous substances from the sign a score of 300 and do not	site (see			
Surface Water Cri	has been exposed to literia List, page 11), as ne Primary Sensitive En	hazardous substances from the sign a score of 300 and do not	site (see	_		
Surface Water Cri	iteria List, page 11), as	hazardous substances from the sign a score of 300 and do not	site (see	_		
Surface Water Cri	iteria List, page 11), as	hazardous substances from the sign a score of 300 and do not	site (see	_		
Surface Water Cri	iteria List, page 11), as ne Primary Sensitive En	hazardous substances from the sign a score of 300 and do not avironments:	site (see			
Surface Water Cri Factor 13. List the	iteria List, page 11), as ne Primary Sensitive En ,,, ISITIVE ENVIRONMEN	hazardous substances from the sign a score of 300 and do not avironments:	site (see evaluate ,			
Surface Water Cri Factor 13. List the SECONDARY SEN A. For Secondary	iteria List, page 11), as ne Primary Sensitive En ,, ISITIVE ENVIRONMEN Sensitive Environmen	hazardous substances from the sign a score of 300 and do not avironments: TS: ts on surface water bodies with	site (see evaluate , , .			
Surface Water Cri Factor 13. List the SECONDARY SEN A. For Secondary 100 cfs or les	iteria List, page 11), as ne Primary Sensitive En ,, ISITIVE ENVIRONMEN Sensitive Environmen	hazardous substances from the sign a score of 300 and do not avironments:	site (see evaluate , , .			
Surface Water Cri Factor 13. List the SECONDARY SEN A. For Secondary	iteria List, page 11), as ne Primary Sensitive En ,, ISITIVE ENVIRONMEN Sensitive Environmen	hazardous substances from the sign a score of 300 and do not avironments: TS: ts on surface water bodies with	site (see evaluate , , .			
SECONDARY SEN A. For Secondary 100 cfs or les	iteria List, page 11), as ne Primary Sensitive En ,, ISITIVE ENVIRONMEN Sensitive Environmen	hazardous substances from the sign a score of 300 and do not avironments: TS: ts on surface water bodies with ows, and do not evaluate part E	site (see evaluate 			
SECONDARY SEN A. For Secondary 100 cfs or les	Isitive Environments, assign scores as follows:	hazardous substances from the sign a score of 300 and do not avironments: TS: ts on surface water bodies with ows, and do not evaluate part E Environment Type and Value	site (see evaluate			
Secondary Sen 100 cfs or lest this factor:	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following the control of the contro	hazardous substances from the sign a score of 300 and do not avironments: TS: ts on surface water bodies with ows, and do not evaluate part E	site (see evaluate 			
Surface Water Cri Factor 13. List the SECONDARY SEN A. For Secondary 100 cfs or les this factor:	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as followed to the control of the cont	tazardous substances from the sign a score of 300 and do not evironments: TS: ts on surface water bodies with ows, and do not evaluate part E Environment Type and Value (PA Tables 5 and 6) x	site (see evaluate			
Surface Water Cri Factor 13. List the SECONDARY SEN A. For Secondary 100 cfs or les this factor:	Isiteria List, page 11), as the Primary Sensitive Ending Sensitive Ending Sensitive Ending Sensitive Environments, assign scores as follows: Dilution Weight (PA Table 4)	ts on surface water bodies with ows, and do not evaluate part Environment Type and Value (PA Tables 5 and 6) X W. Horring	site (see evaluate '			
Surface Water Cri Factor 13. List the SECONDARY SEN A. For Secondary 100 cfs or les this factor: Flow /// and cfs cfs	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following the Control of the Contro	tazardous substances from the sign a score of 300 and do not evironments: TS: Its on surface water bodies with ows, and do not evaluate part E Environment Type and Value (PA Tables 5 and 6) X X	site (see evaluate '			
Secondary 100 cfs or les this factor: Flow /// and cfs cfs cfs	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following (PA Table 4)	ts on surface water bodies with ows, and do not evaluate part Environment Type and Value (PA Tables 5 and 6) X X X	site (see evaluate			
SECONDARY SEN A. For Secondary 100 cfs or les this factor: Flow /// and cfs cfs cfs cfs	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following (PA Table 4)	ts on surface water bodies with ows, and do not evaluate part Environment Type and Value (PA Tables 5 and 6) X X X	site (see evaluate			
SECONDARY SEN A. For Secondary 100 cfs or les this factor: Flow /// and cfs cfs cfs cfs	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following (PA Table 4)	ts on surface water bodies with ows, and do not evaluate part Environment Type and Value (PA Tables 5 and 6) X X X	site (see evaluate			
Surface Water Cri Factor 13. List th SECONDARY SEN A. For Secondary 100 cfs or les this factor: Flow /// aud cfs cfs cfs cfs Cfs B. If NO Seconda	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following the property of the pro	to a surface water bodies with ows, and do not evaluate part E Environment Type and Value (PA Tables 5 and 6) X X And A surface water bodies with ows, and do not evaluate part E	site (see evaluate flows of a of Total Sum =	[10 as 04	[10 or O]	
Surface Water Cri Factor 13. List th SECONDARY SEN A. For Secondary 100 cfs or les this factor: Flow /// aud cfs cfs cfs cfs Cfs B. If NO Seconda	ISITIVE ENVIRONMENT Sensitive Environments, assign scores as following (PA Table 4)	to a surface water bodies with ows, and do not evaluate part E Environment Type and Value (PA Tables 5 and 6) X X And A surface water bodies with ows, and do not evaluate part E	site (see evaluate flows of a of Total Sum =	[10 a 04	[10 or O]	(5)

NOV 0 6 1990

Lackede. Coal Gas 17

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

	A	B
WASTE CHARACTERISTICS	Suspected Release	No Suspected Release
14. A. If you have identified ANY Primary Targets for surface water (pages 12, 14, or 15), assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor.	1100 or 321	
B. If you have NOT identified any Primary Targets for surface water, assign the waste characteristics score calculated on page 4.	(100,32, or 18)	(100,32, or 18)
wc =	3-2	

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 12)	Targets (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Threat Score LR x T x WC / 82,500
Drinking Water	550	3,000,055	3-2	(m.bijaat to a maximum of 100)
Human Food Chain	550	300	32	(subject to a maximum of 100)
Environmental	550	10	32	(subspace to a minimum of 60)

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat) 100

Site Name: Laclede- Corl Cars 19
Date: 1-14-91
ESHEFT

	_	_	7		_	_
NΩ	v		Λ	4	•	000

40A O	3 1990 SOIL EXPOSURE PATHWAY SCORESHEET			
	Pathway Characteristics			
	Do any people live on or within 200 ft of areas of suspected contamination?	Yes	No 🗸	
	Do any people attend school or day care on or within 200 ft of areas			
	of suspected contamination?		No	
	Is the facility active? Yes No If yes, estimate the number of wo	rkers:		
		A	B	
,		Suspected	No Suspected	
LIKELI	HOOD OF EXPOSURE		Contamination	References
1 5115		(560)		
	core of 550 is assigned.	550		
L		<u> </u>		
RESIDI	ENT POPULATION THREAT TARGETS			
2 050	IDENT POPULATION: Determine the number of people occupying residences			
1	ttending school or day care on or within 200 feet of areas of suspected	1		
	tamination (see Soil Exposure Pathway Criteria List, page 18).			(1)
	people x 10 =			(1) (1)
2 DEC	 IDENT INDIVIDUAL: If you have identified any Resident Population (Factor 2),	150 as 04		(1) (10)
	ign a score of 50; otherwise, assign a score of 0.			(1)(10)
	3	(15, 10, 5, or 0)		
ı	RKERS: Assign a score from the following table based on the total number of	Į.		
wor	kers at the facility and nearby facilities with suspected contamination:			
	Number of Workers Score			
	0 0 0 11 Was Kars)		
	101 to 1,000 10			1.1
	> 1,000 15	[(8)
Trr	POTESTINAL CENTRAL FAMILIONNATATE. Assistance and the DA Table 7			
1	RRESTRIAL SENSITIVE ENVIRONMENTS: Assign a value from PA Table 7 each terrestrial sensitive environment that is located on an area of suspected			
	tamination:			
1	Terrestrial Sensitive Environment Type Value			
}	1 July 1	ļ		
1				
		1		(7)
	Sum =			(/)
6 050	COURCES. A seem of E is assisted	(5) 5		
O. RES	SOURCES: A score of 5 is assigned.	_	<u>-</u>	
		10		
	Τ =	10		I
WAST	CHARACTERISTICS			•
		[100, 32, or 18]		
/. As:	sign the waste characteristics score calculated on page 4. WC =	18		
L			and any and a second	i
		(exchange to a	maremum of 100(Ī
RESID	ENT POPULATION THREAT SCORE: LE x T x WC	1	/	Į.
	82,500		/	
NEAD	BY POPULATION THREAT SCORE:			1
	a score of 2	1 2	?	
				4
6011	EVECUEE BATIRMAY COOPE.	(subject to a	majoritum of 100)	7
	EXPOSURE PATHWAY SCORE: ent Population Threat + Nearby Population Threat] 3		
116210	ent i opaletion illiget i i leginy ropuletion 1916 et	1		•

NOV 0 6 1990

AIR PATHWAY SCORESHEET Pathway Characteristics

Site Name: Laclere Cool Cas 22 Date:

1	-/	,,,	1	· '
	_/	\sim	-	~/

•	Do you suspect a release (see Air Pathway Criteria List, page 21)? Distance to the nearest individual:	Yes	Noft	
		Α	В	
LIK	KELIHOOD OF RELEASE	Suspected Release	No Suspected Release	References
1.	SUSPECTED RELEASE: If you suspect a release to air (see page 21), assign a score of 550, and use only column A for this pathway.	[5 60]		
2.	NO SUSPECTED RELEASE: If you do not suspect a release to air, assign a score of 500, and use only column B for this pathway.		500	(1)(2)
Τ.	LR =		500	
- 1 A	RGETS			
3.	PRIMARY TARGET POPULATION: Determine the number of people subject to exposure from a release of hazardous substances through the air (see Air Pathway Criteria List, page 21).			
4.	SECONDARY TARGET POPULATION: Determine the number of people within the 4-mile target distance limit, and assign the total population score from PA Table 8.		61	(8)
5.	NEAREST INDIVIDUAL: If you have identified any Primary Targets for the air pathway, assign a score of 50; otherwise, assign the highest Nearest Individual score from PA Table 8.	[50,20,7,2,1, or 0]	(20,7,2,1, ∞ 0) → O	(10)
6.	PRIMARY SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (PA Table 5) and wetland acreage values (PA Table 9) for environments subject to exposure from air hazardous substances (see Air Pathway Criteria List, page 21). Sensitive Environment Type Value Sum =			
7.	SECONDARY SENSITIVE ENVIRONMENTS: Use PA Table 10 to determine the score for secondary sensitive environments.			(7)
8.	RESOURCES: A score of 5 is assigned.	5	151 5	
	Τ =		86	
W	ASTE CHARACTERISTICS	[100 or 32]	Foreston.	1
9.	A. If you have identified any Primary Targets for the air pathway, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor.			
	B. If you have NOT identified any Primary Targets for the air pathway, assign the waste characteristics score calculated on page 4.	[190,32, or 18]	100.32. @ 18	
	WC =		18	
Α	IR PATHWAY SCORE: LR x T x WC	(authorize to a	resomum et 100)	

82,500

DRAFT NOV 0 6 1990

Site Name: La che Con Cous Date: 1-14-91

SITE SCORE CALCULATION

• •	S	S²
GROUND WATER PATHWAY SCORE (Sgw):	/	/
SURFACE WATER PATHWAY SCORE (S,):	100	10,000
SOIL EXPOSURE PATHWAY SCORE (S,.):	3	9
AIR PATHWAY SCORE (S.):	9	8/
SITE SCORE:	$\sqrt{\frac{S_{gw}^2 + S_{sw}^2 + S_{se}^2 + S_a^2}{4}} =$	50

RECOMMENDATION

SUMMARY

			YES	NO
1.		re a high possibility of a threat to nearby drinking water wells by migration of hazardous ances in ground water?		ø
i	A. If	yes, identify the wells recommended for sampling during the SI.		
	B. If	yes, how many people are served by these threatened wells?		
2.		ny of the following suspected to have been exposed to hazardous substances through ce water migration from the site?		
	A. D	rinking water intake	Z	
	B. F	shery	Z Z	
	c. s	ensitive environment: wetland, critical habitat, others		ø
		yes, identify the targets recommended for sampling during the SI.		
	-	Hossississi Biver		
3.	Do p	eople reside or attend school or day care on or within 200 ft of any area of suspected mination?		Ø
4.		here public health concerns at this site that are not addressed by PA scoring considerations? explain:		Ø

LACLEDE COAL GAS SITE

REFERENCES

- 1). Ecology and Environment, Inc., Field Investigation Team, November 20, 1990, Site Reconnaissance of the Laclede FMGP, TDD #F-07-9008-020.
- 2). Ecology and Environment, Inc., Field Investigation Team, June 23, 1988, Preliminary Assessment of the Former Union Electric Mound Street Power Plant Site, TDD #F-07-8708-029.
- 2a). Environmental Research & Technology, Inc., and Koppers Co Inc., September 1984, Handbook on Manufactured Gas Plant Sites.
- 3). Schlosser, Wayne, December 7, 1990, Community Relations Manager, Illinois American Water Company, telephone conversation with Keith Brown, E & E/FIT.
- 4). Ellis, Brian, December 7, 1990, Lieutenant, U.S. Coast Guard, telephone conversation with Keith Brown, E & E/FIT.
- 5). Nichols, Nick, August 31, 1990, Department Manager, City of St. Louis, Port Authority, telephone conversation with Keith Brown, E & E/FIT.
- 6). Lewis, Randal, January 11, 1991, Terminal Manager, Petroleum Fuel & Terminal Co., telephone conversation with Keith Brown, E & E/FIT.
- 7). Dickneite, Dan, Missouri Department of Conservation, January 8, 1991, letter to Keith Brown, E & E/FIT.
- 8). U.S. Environmental Protection Agency, March 1989, Graphical Exposure Modeling System, Washington D.C.
- 9). Rapp, Jerry, December 7, 1990, Engineer, U.S. Corp of Engineers, telephone conversation with Keith Brown, E & E/FIT.
- 10). U.S. Geological Survey, 1968 revised, 7.5 Minute Series Topographic Map, Granite City Quadrangle, Missouri, Washington D.C.

CONFIDENTIAL

KFCFIVEL

OCT 3 1 1991

SAFE SECTION

ecology and environment, inc.

CLOVERLEAF BUILDING 3, 6405 METCALF, OVERLAND PARK, KANSAS 66202, TEL. 913/432-9961

International Specialists in the Environment

MEMORANDUM

Pete Culver, RPO

THRU: Sharon Martin, FITOM

FROM: E & E/FIT

TO:

DATE: October 29, 1991

ID#: MOD981715980 Break:

Other:

SUBJECT: HRS Considerations and Recommendations for the Laclede Coal

Gas Plant Site, located in St. Louis, Missouri.

TDD #F-07-9008-020 PAN #FM00579SA

Site #Y33 Project #002

Superfund Contact: Greg Reesor Project Manager: Keith A. Brown

The Region VII U.S. Environmental Protection Agency (EPA) tasked the Ecology and Environment, Inc.. Field Investigation Team (E & E/FIT) to conduct a Screening Site Inspection (SSI) of the former Laclede Coal Gas Plant site in St. Louis, Missouri. The purpose of the SSI is to determine if a potential environmental hazard is posed by tar and purifier wastes which may have been buried on site.

The site was first investigated by E & E/FIT under the Mound Street Power Plant Preliminary Assessment (PA) TDD #F-07-8708-029. completed on September 17, 1987. The Mound Street Power Plant PA was prompted by reports of oil accumulation in the facility and occasional oil releases to the Mississippi River.

During the PA for the former Mound Street Power Plant site, the E & E/FIT collected six liquid samples from the basement of the facility and two samples from two different manholes adjacent to the facility. All samples were screened for PCBs at a 1 ppm detection limit by the E & E/FIT Field Analytical Support Program (FASP). No PCB contaminants were identified by the Tracor gas chromatograph.

Sampling data from the SSI revealed cyanide and PAHs as the major on-site contaminants. Cyanide contamination was found throughout the site in the 0 to 2 foot deep soil samples. Deeper soil samples revealed cyanide contamination at depths at least as great as 11 feet. PAH contamination, both in shallow and deep soil samples, was restricted to small areas within the site. The greatest area of PAH contamination was found within the bermed tank farm. Only one ground water sample showed PAH contamination. However, the concentrations are far less extensive than the soil concentrations. Surface water samples showed undetected levels of PAH or cyanide contamination. Sediment samples revealed low levels of PAH contamination.

recycled paper

HRS Consideration & Recommendations Laclede Former Coal Gas Site Page 2

HRS CONSIDERATIONS

Prior to the SSI, a Hazardous Ranking System (HRS) PA Methodology score of 50 was calculated for the site. This score represented a worst case scenario. After completion of the SSI, a new PA methodology score of 27 was calculated for the site. Sample analyses indicated that the only primary target population for the site is now a potential target population. Thus, the drop in score. The ground water, soil, and air pathways scored slightly higher after the SSI on the PA Methodology Score Sheets. Their scores are 3, 9, and 52, respectively. The higher scores are due to the increase in the waste characteristic score, which was calculated after the SSI was completed. Previously, the waste characteristic score was 18, but this had been calculated incorrectly. The correct waste characteristic score is 100. Thus, the ground water, soil, and air pathways scored higher. The surface water pathway score, however, dropped from the maximum score of 100 to only 11. The score of 100 was calculated with the assumption of a suspected release. A primary target population of approximately 300,000 people produced a drinking water threat score of 3,000,000. However, surface water samples indicated that there is currently no significant contaminants being released from the site into the surface water. Thus, the primary target population is now a secondary target population under the no suspected release criteria. This dropped the drinking water threat score down to 7.

RECOMMENDATIONS

E & E/FIT recommends that the Corps of Engineers piezometer wells, which are located between the site and the Mississippi River, be sampled on an annual basis to determine if contaminants are migrating in the ground water. There is the potential for a ground water to surface water release because of the close proximity of the Mississippi River. No other work needs to be performed at the current time, due to the fact that no other pathway targets exist near the site, except for the surface water pathway potential drinking water threat target. If more significant contamination is detected in the piezometer wells, then additional monitoring well installation is recommended.

Attachments: PA Methodology Score Sheets HRS References

07	06	1990	GROUND WATER PATHWAY SCORESHEET			
			Pathway Characteristics			
		Is the site loc Depth to aqui		Yes Yes		
		Distance to tr	he nearest drinking-water well:			
			ſ	A Suspected	No Suspected	
LIK	ELIH	OOD OF RELI	EASE	Release	Release	References
1.			SE: If you suspect a release to ground water (see page 7), O, and use only column A for this pathway.	550	(500 ar 340)	(<u>1)(2)(</u> 4
2.	the si	te is in karst te	EASE: If you do not suspect a release to ground water, and rrain or the depth to aquifer is 70 feet or less, assign a score assign a score of 340. Use only column B for this pathway.			
-	-		LR =	550		
TA	RGET	rs	· 	·	y	•
3.	drinki	ng water from	POPULATION: Determine the number of people served by wells that you suspect have been exposed to hazardous site (see Ground Water Pathway Criteria List, page 7).			(2)(5)
4.	drink	ing water from	ET POPULATION: Determine the number of people served by wells that you do NOT suspect have been exposed to hazardous site, and assign the total population score from PA Table 2.			
			s part of a blended system? Yes No n a page to show apportionment calculations.	(50,20,18.8,6.3.2, ar Ol	(20, 10 0 5,3 2 = 0)	(2)(5)
5.	assig	n a score of 50	you have identified any Primary Targets for ground water, b; otherwise, assign the highest Nearest Well score from rinking-water wells exist within 4 miles, assign a score of zero.			2(5)
6.			CTION AREA (WHPA): Assign a score of 20 if any portion of is within ¼ mile of the site; assign 5 if from ¼ to 4 miles.	120. 9. = 0)	120, 5, w OI	
7.	RESC	OURCES: A sco	ore of 5 is assigned.	5	5	
			Τ =	5-		
w	ASTE	CHARACTE	RISTICS			
8.	С	haracteristics s	tified any Primary Targets for ground water, assign the waste core calculated on page 4, or a score of 32, whichever is of evaluate part B of this factor.	(1100 er 32)		
		•	identified any Primary Targets for ground water, assign the istics score calculated on page 4.	100.32. @ 101	(100 JŽ ar 18)	
			wc =	100	<u> </u>	
				[mdyset to a	maximum er 100l	7

GROUND WATER PATHWAY SCORE:

LR x T x WC 82,500 (national to a maximum or 100)

Site Name: Lackede Coal Gas 12

Date: Oct. 10, 1991

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics	
Do you suspect a release (see Surface Water Pathway Criteria List, page 11)? Distance to surface water: Flood Frequency: What is the downstream distance to the nearest drinking-water intake?	Yes No _/

LII	KELIHOOD OF RELEASE	Release	Release	References
1.	SUSPECTED RELEASE: If you suspect a release to surface water (see page 11), assign a score of 550, and use only column A for this pathway.	15601		
2.	NO SUSPECTED RELEASE: If you do not suspect a release to surface water, and the distance to surface water is 2,500 feet or less, assign a score of 500; otherwise, assign a score from the table below. Use only column B for this pathway.		(500,400,300 ± 100)	
	Site in annual or 10-yr floodplain 500 Site in 100-yr floodplain 400 Site in 500-yr floodplain 300 Site outside 500-yr floodplain 100		500	(3)
DF	LR =	(550)	(500.400.300 er 100) 500	
3.	by all drinking-water intakes within the 15-mile target distance limit. If there are no drinking-water intakes within the target distance limit, assign a total Targets score of 5 at the bottom of this page (Resources only) and proceed to page 14.			
	Intake Name Water Body Type Flow People Served Sil Consucer water Com Kine 140,000 cts 300,000			
	cfs			(5 <u>)</u> (6)
4.	PRIMARY TARGET POPULATION: If you suspect any drinking-water intake listed above has been exposed to hazardous substances from the site (see Surface Water Pathway Criteria List, page 11), list the intake name(s) and calculate the factor score based on the number of people served.			
	people x 10 =			
5.	SECONDARY TARGET POPULATION: Determine the Secondary Target Population score from PA Table 3 based on the populations using drinking-water from intakes that you do NOT suspect have been exposed to hazardous substances from the site.		Z	
	Are any intakes part of a blended system? Yes No If yes, attach a page to show apportionment calculations.			(5)(5)
6.	NEAREST INTAKE: If you have identified any Primary Targets for the drinking water threat (Factor 4), assign a score of 50; otherwise, assign the Nearest Intake score from PA Table 3. If no drinking-water intake exists within the 15-mile target distance limit, assign a score of zero.	(50.20,10.2,1, ar 0)	[20,10.2.1.	(6)
7.	RESOURCES: A score of 5 is assigned.	151 5	151 5	

T =

PA TABLE 3: VALUES FOR SECONDARY SURFACE WATER TARGET POPULATIONS

Surface Water		Nearest	<u> </u>		nja nast 🖡	Population	Served by	Intakes	Within Flo	w Categoi	γ	. jangatus		-
Body Flow	1	intake	7	31	101	301	1,001	3,001	10,001	30,001	100,001	300,001	1,000,001	
Characteristics	0	(choose	to	to	to	to	to	to	to	to	to	to	to	Population
(see PA Table 4)	Population	highest)	30	100	300	1,000	3,000	10,000	30,000	100,000	300,000	1,000,000	3,000,000	Value
< 10 cfs		20	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
10 to 100 cfs	 ;	2	1	1	2	5	16	52	163	521	1,633	5,214	16,325	
>100 to 1,000 cfs		1	0	0	1	1	2	5	16	52	163	521	1,633	
>1,000 to 10,000 cfs		0	0	0	0	o	1	1	2	5	1 6	52	163	
> 10,000 cfs or Great Lakes	300,000	0	0	0	0	0	0	0	1	1	2	5	16	
3-mile Mixing Zone		10	1	3	8	26	82	261	816	2,607	8,162	26,068	81,663	
Nearest Intake = O Score =							Z_							

PA TABLE 4: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH DILUTION WEIGHTS FOR SECONDARY SURFACE WATER SENSITIVE ENVIRONMENTS

Type of Si	rface Water Body	Dilution
Water Body Type	OR Flow Characteristics	Weight
minimal stream	flow less than 10 cfs	1
small to moderate stream	flow 10 to 100 cfs	0.1
moderate to large stream	flow greater than 100 to 1,000 cfs	N/A
large stream to river	flow greater than 1,000 to 10,000 cfs	N/A
large river	flow greater than 10,000 cfs	N/A
3-mile mixing zone of quiet flowing streams or rivers	flow 10 cfs or greater	N/A
coastal tidal water (harbors, sounds, bays, etc.), ocean, or Great Lakes	N/A	N/A

NOV 06 1990

Site Name: Laclede Coal Gas Date: Oct. 10, 1991

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

			A	В	
LIKELIHOOD	OF RELEASE		Suspected Release	No Suspected Release	Reference.
Enter the Surface	ce Water Likelihood of Release so	core from page 12. LR =	(560)	(500,400,300 er 100)	
		EN 2		500	
HUMAN FO	OD CHAIN THREAT TARGET	rs			•
the 15-mile	e target distance limit. If there a mit, assign a Targets score of O a	(if applicable) for all fisheries within re no fisheries within the target at the bottom of this page and			·
Fishery Na	ame	Water Body Type Flow			
_/Y/,	ssissippi River				(11)(16
to hazardoi	us substances from the site (see	shery listed above has been exposed Surface Water Criteria List, page 11), Factor 10. List the Primary Fisheries:	(300 er O)		<u> </u>
assign a Se	RY FISHERIES: If you have not in econdary Fisheries score from the ery within the 15-mile target dist	table below using the LOWEST flow	(210.30,12 w O)	i210,00,12, ⊯ Oi	
	Lowest Flow	Secondary Fisheries Score			
	< 10 cfs	210		/2	
	10 to 100 cfs	30		'	
	> 100 cfs, coastal tidal waters, oceans, or Great Lakes	12			
					(6)
			1300 210 30 12 at 01	(210.20.12 = 0)	

NOV 06 1990

Site Name: Laclede Coal Gas Date: Oc+10, 1991 AY (continued)

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

				A	В	
				Suspected	No Suspected	
LIKELIHOOD OF RE	LEASE			Release	Release	References
Enter the Surface Wate	r Likelihood of Release s	core from page 12.	LR =	1300	500	
ENVIRONMENTAL	THREAT TARGETS			· · · · · · · · · · · · · · · · · · ·		
	<u> </u>				Den Wille.	
sensitive environm and 5). If there are	ents within the 15-mile eno sensitive environme	it (if applicable) for all surface water target distance limit (see PA Talents within the 15-mile target dittom of this page, and proceed	ibles 4 istance			
Environment Nam	0	Water Body Type Flo	w			
			cfs			
	·····		cfs			
			cfs			
			cts			
			cfs			
Surface Water Cri	•	zardous substances from the si gn a score of 300 and do not e ronments:				
13. SECONDARY SEN	ISITIVE ENVIRONMENTS	S :			1	
		on surface water bodies with f ws, and do not evaluate part B				
Flow	Dilution Weight (PA Table 4)	Environment Type and Value (PA Tables 5 and 6)	Total			
cfs		ILV LONGS 2 GIM O	, 0(8)			
cfs			 			
cfs		-	11			
cfs	1				1	
cfs		<u> </u>				
			Sum =			_
B If NO Seconds	ary Sensitive Environmen	nts are located on surface water	r hodies	(10 ≈ 0l	[10 or 0i	
•	100 cfs or less, assign		Douica		0	(7) (11)
		<u> </u>	Τ =		0]
			, =	L		J.

NOV 06 1990

Site Name: Laclede Coal Gras
Date: OCT, 10,1991
WATER PATHWAY (concluded)

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

	A	В
WASTE CHARACTERISTICS	Suspected Release	No Suspected Release
14. A. If you have identified ANY Primary Targets for surface water (pages 12, 14, or 15), assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor.	(100 er 32(
B. If you have NOT identified any Primary Targets for surface water, assign the waste characteristics score calculated on page 4.	(100.32, - 18)	(100.32, ± 18)
WC =		100

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 12)	Targets (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Threat Score LR x T x WC /82,500
Drinking Water	500	7	100	(substant to a massessum of 100)
Human Food Chain	500	/2	100	laderet to a maximum of 100)
Environmental	500	0	100	(subsect to a maximum of 60)

SURFACE WATER PATHWAY SCORE
(Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

NOV 0 3 1990

Site Name: Loclede Coal Gas
Date: Oct. 10,1991

SOIL EXPOSURE PATHWAY SCORESHEET

•	Pathway Characteristics					
	Do any people live on or within 200 ft of areas of suspected contamination? Do any people attend school or day care on or within 200 ft of areas		No 🗸			
	of suspected contamination? Is the facility active? Yes No If yes, estimate the number of wo		No <u></u>			
	<u> </u>	A	 B			
		Suspected	No Suspected			
LI	KELIHOOD OF EXPOSURE	Contamination	Contamination	References		
1.	SUSPECTED CONTAMINATION: Surficial contamination is assumed. A score of 550 is assigned.	550				
RE	SIDENT POPULATION THREAT TARGETS	T				
2.	RESIDENT POPULATION: Determine the number of people occupying residences					
	or attending school or day care on or within 200 feet of areas of suspected contamination (see Soil Exposure Pathway Criteria List, page 18).	_				
	people x 10 =			(<u>1</u>)(12)		
3.	RESIDENT INDIVIDUAL: If you have identified any Resident Population (Factor 2),	150 - 01				
•	assign a score of 50; otherwise, assign a score of 0.	0		(1)(12)		
4.	WORKERS: Assign a score from the following table based on the total number of	[15, 10, 5, at 0]				
	workers at the facility and nearby facilities with suspected contamination:					
	Number of Workers Scare					
	1 to 100 5					
	101 to 1,000 10			(9)		
	> 1,000 15		er Constant	(0)		
5.	TERRESTRIAL SENSITIVE ENVIRONMENTS: Assign a value from PA Table 7					
	for each terrestrial sensitive environment that is located on an area of suspected contamination:	ĺ				
	Terrestrial Sensitive Environment Type Value					
	None					
	Sum ==			(9)		
_		161	Barai V. er	1		
6.	RESOURCES: A score of 5 is assigned.	5		1		
	T =	10]		
<u> </u>	VASTE CHARACTERISTICS	[100, 32, or 16]	7	7		
7.	Assign the waste characteristics score calculated on page 4. WC =	100]		
R	RESIDENT POPULATION THREAT SCORE: LE x T x WC 82,500 7					
	SEARBY POPULATION THREAT SCORE: SSign & Score of 2		2]		
	OIL EXPOSURE PATHWAY SCORE: Resident Population Threat + Nearby Population Threat	(maper to	9			

Site Name: Loclede Coal 695
Date: Oct. 10,1991

NOV 06 1990

AIR PATHWAY SCORESHEET

-	Pathway Characteristics			
	Do you suspect a release (see Air Pathway Criteria List, page 21)? Distance to the nearest individual:	Yes	Noft	
		Α		
LIE	ELIHOOD OF RELEASE	Suspected Release	No Suspected Release	References
1.	SUSPECTED RELEASE: If you suspect a release to air (see page 21), assign a score of 550, and use only column A for this pathway.	15601	(500)	
2.	NO SUSPECTED RELEASE: If you do not suspect a release to air, assign a score of 500, and use only column B for this pathway.		500	(1)(2)
	LR =		500	
TA	RGETS			
3.	PRIMARY TARGET POPULATION: Determine the number of people subject to exposure from a release of hazardous substances through the air (see Air Pathway Criteria List, page 21) people x 10 =			
4.	SECONDARY TARGET POPULATION: Determine the number of people within the 4-mile target distance limit, and assign the total population score from PA Table 8.	(50,20,7.2,1, or O)	6/ 120,7,2,1, or 01	(10)
5.	NEAREST INDIVIDUAL: If you have identified any Primary Targets for the air pathway, assign a score of 50; otherwise, assign the highest Nearest Individual score from PA Table 8.		20	(12)
6.	PRIMARY SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (PA Table 5) and wetland acreage values (PA Table 9) for environments subject to exposure from air hazardous substances (see Air Pathway Criteria List, page 21). Sensitive Environment Type Value Sum =			
7.	SECONDARY SENSITIVE ENVIRONMENTS: Use PA Table 10 to determine the score for secondary sensitive environments. 7 1/2 mile	(6)	151	(9)
8.	RESOURCES: A score of 5 is assigned.	5	5	
	Τ =		86]
<u> </u>	ASTE CHARACTERISTICS	(100 or 32)	10 1 8 2	ר
9.	A. If you have identified any Primary Targets for the air pathway, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor.			
	B. If you have NOT identified any Primary Targets for the air pathway, assign the waste characteristics score calculated on page 4.	(100,32, er 18)	(100,32. = 16)	
	wc =		100	_
Δ	IR PATHWAY SCORE: LR x T x WC	(m.bysen to a	mpamum of 100f]
-	82,500	5.	2	1

82,500

PA TABLE 8: VALUES FOR SECONDARY AIR TARGET POPULATIONS

	Υ	Nearest	agayan ta	मा भूतिको । ।	y v	F	apulation	Within Di	tance Car	legory		12 47.311 x		11-11	
}	†	Individual	7	11	31	101	301	1,001	3,001	10,001	30,001	100,001	300,001	1,000,001	
Distance	l	(choose	to	to	to	to	to	to	10	10	10	10	to	to	Population
from Site	Population	highest)	10	30	100	300	1,000	3,000	10,000	30,000	100,000	300,000	1,000,000	3,000,000	Value
Onsite		20	1	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	
>0 to ¼ mile	24_	20)	1	,	1	4	13	41	130	408	1,303	4,081	13,034	40,811	
>% to % mile	1720	2	0	0	1	1	3	9	28	88	282	882	2,815	8,815	9
>½ to 1 mile	4842	1	o	0	0	1	1	3	8	26	83	261	834	2,612	8
>1 to 2 miles	25978	0	o	0	0	0	1	1	3	8	27	83	266	833	8
> 2 to 3 miles	68360	0	O	0	0	0	1	1	1	4	12	38	120	376	
> 3 to 4 miles	106/18	0	o	0	0	o	0	1	1	2	7	23	73	229	23
Nearest	Individual =	ەد_												Score =	61

PA TABLE 9: AIR PATHWAY VALUES FOR WETLAND AREA

Wetland Area	Assigned Value
Less than 1 acre	0
1 to 50 acres	25
Greater than 50 to 100 acres	75
Greater than 100 to 150 acres	125
Greater than 150 to 200 acres	175
Greater than 200 to 300 acres	250
Greater than 300 to 400 acres	350
Greater than 400 to 500 acres	450
Greater than 500 acres	500

PA TABLE 10: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY SECONDARY SENSITIVE ENVIRONMENTS

Oistança	Dietance Weight	Sensitive Environment Type and Value (from PA Table 5 or 9)	Product
Onsite	0.10	х	
		×	
	0.025	×	
0-1/4 mi		×	
		x	
	0.0054	x	
1/4-1/2mi		×	
		x	
		и	

Total Environments Score =

DRAFT NOV 0 6 1990

Site Name: Lackede Cool Gas 24
Date: Oct. 10,1991

SITE SCORE CALCULATION

	S	S²
GROUND WATER PATHWAY SCORE (Spw):	3	9
SURFACE WATER PATHWAY SCORE (S,):		121
SOIL EXPOSURE PATHWAY SCORE (S,.):	9	81
AIR PATHWAY SCORE (S.):	52	2704
SITE SCORE:	$\sqrt{\frac{S_{gw}^2 + S_{sw}^2 + S_{se}^2 + S_a^2}{4}} =$	2 7

RECOMMENDATION		 	
j			

SUMMARY

	YES	NO
Is there a high possibility of a threat to nearby drinking water wells by migration of hazardous substances in ground water?		\
A. If yes, identify the wells recommended for sampling during the SI.		
B. If yes, how many people are served by these threatened wells?		
Are any of the following suspected to have been exposed to hazardous substances through surface water migration from the site?		
A. Drinking water intake		×
B. Fishery		×
C. Sensitive environment: wetland, critical habitat, others		×
D. If yes, identify the targets recommended for sampling during the SI.		
Do people reside or attend school or day care on or within 200 ft of any area of suspected contamination?		\$ \$
Are there public health concerns at this site that are not addressed by PA scoring consideration if yes, explain:	ns7 🗆	×

References Laclede Coal Gas Site

- 1. Ecology and Environment, Inc., Field Investigation Team (E & E/FIT), November 20, 1990, Site Reconnaissance of the Laclede FMGP, TDD #F-07-9008-020.
- 2. Ecology and Environment, Inc., Field Investigation Team (E & E/FIT), June 23, 1988, Preliminary Assessment of the Former Union Electric Mound Street Power Plant Site, TDD #F-07-8708-029.
- 3. Ecology and Environment, Inc., Field Investigation Team (E & E/FIT), October 1991, SSI Final Report of the Laclede Coal Gas Site, TDD #F-07-9008-020.
- 4. Environmental Research & Technology, Inc., and Koppers Co. Inc., September 1984, Handbook on Manufactured Gas Plant Sites.
- 5. Schlosser, Wayne, December 7, 1990, Community Relations Manager, Illinois American Water Company, telephone conversation with Keith Brown, E & E/FIT.
- 6. Ellis, Brian, December 7, 1990, Lieutenant, U.S. Coast Guard, telephone conversation with Keith Brown, E & E/FIT.
- 7. Nichols, Nick, Department Manager, City of St. Louis, Port Authority, August 31, 1990, telephone conversation with Keith Brown, E & E/FIT.
- 8. Lewis, Randal, Terminal Manager, Petroleum Fuel & Terminal Co., telephone conversation with Keith Brown, E & E/FIT.
- 9. Dickneite, Dan, Missouri Department of Conservation, January 8, 1991, letter to Keith Brown, E & E/FIT.
- 10. U.S. Environmental Protection Agency, March 1989, Graphical Exposure Modeling System, Washington, D.C.
- 11. Rapp, Jerry, Engineer, U.S. Corp of Engineers, telephone conversation with Keith Brown, E & E/FIT.
- 12. U.S. Geological Survey, 1968 revised, 7.5 Minute Series Topographic Map, Granite City Quadrangle, Missouri, Washington, D.C.